import numpy as np class Actor: def __init__(self , aw , av , au , gamma ,h = 3 ): # Initialize all parameters self.X = np.zeros((3,1)) self.h = h self.wh = np.zeros( (h,3) ) # actor self.K =np.zeros( (3,1) ) # actor self.w = np.zeros( (3, h) ) self.output = np.zeros( (h,1) ) # Learning Rates # actor self.aw = aw # both self.au = au def HiddenLayer(self): # Description : Takes in the state vector at a given time step and computes the output vector for the next layer output = 1/(1 + np.exp(self.wh.dot(self.X)) ) self.output = output def OutputLayer(self): # Description : Takes in output from Hiddenlayer and computes Ki,Kp and Kd values # actor self.K = self.w.dot(self.output) # print(self.K) def Update1(self,y_ref,yt_0,yt_1,yt_2,yt_3,V,Vprev): # Update Params for next episode # both del_TD = 0.5 * ( y_ref - yt_0 )**2 + self.gamma*V - Vprev # actor # Update w matrix self.w[0] = self.w[0] - self.aw * del_TD*(yt_1 - yt_2)*self.output.T self.w[1] = self.w[1] + self.aw * del_TD*self.X[0,0]*self.output.T self.w[2] = self.w[2] + self.aw * del_TD*(yt_1 - 2*yt_2 + yt_3)*self.output.T def Update2(self,y_ref,yt_0,yt_1,yt_2,yt_3,V,Vprev,v_prev): # Update Params for next episode del_TD = 0.5 * ( y_ref - yt_0 )**2 + self.gamma*V - Vprev for i in range(self.h): self.wh[i,0] = self.wh[i,0] + self.au*del_TD*v_prev[0][i]*self.output[i]*( 1 - self.output[i] )*self.X[0] self.wh[i,1] = self.wh[i,1] + self.au*del_TD*v_prev[0][i]*self.output[i]*( 1 - self.output[i] )*self.X[1] self.wh[i,2] = self.wh[i,2] + self.au*del_TD*v_prev[0][i]*self.output[i]*( 1 - self.output[i] )*self.X[2]